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Introduction to ABB



ABB: the pioneering technology leader
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What 

(Offering)

For whom 
(Customers)

Where 
(Geographies)

Utilities Industry Transport & Infrastructure

~35% of revenue ~40% of revenue ~25% of revenue

Globally

Asia, Middle East, Africa 38% Americas 29% Europe 33% 

~$34 bn revenue ~100 countries ~132,000 employees

Pioneering technology

Products 58% Systems 24% Services & software 18%



About ABB

Utilities
Transportation & 

Infrastructure
Industry 

Renewables
Grid automation

Digitalization
Microgrids

Electrification penetration
Energy storage

Productivity
Energy efficiency

Automation penetration
Internet of Things

Power quality / reliability
Emerging markets

Smart Cities
Data management
Electric transport
Energy efficiency

Power quality / reliability
Decentralized power 

generation
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Shaping the world through innovation 

Investment annually

+$1.5 bn

Scientists and engineers

~ 8,500

University collaborations

~ 70
Corporate research labs 
linked by a global research 
organization

7

Innovation is ingrained in the DNA of ABB



7 Research centers 

Raleigh/Windsor

Västerås

Ladenburg

Baden-Dättwil

Krakow

Bangalore

Beijing/Shanghai



(My very own experience on)
Optimization Role and Goals



• Shift from “manual” to “automated tool” is seen as the holy grail – underlying problem can be tough

• Optimization seen as cherry on the cake… but the cake is needed first 

• Optimization expert needs to educate the customer about “optimization potential/capabilities”

• Customer does not (always) know what he/she wants to optimize

• Optimization can unleash considerable potential savings

• Optimization may threaten jobs. No-optimization may threaten entire companies

© ABB Group 
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Automated tool vs Optimization



1. Discovery

– Understanding the problem, its constraints, its objective function(s)

2. Designing and implementing an optimization model/algorithm

– All models are wrong but some are useful (cit. George Box) 
 understand necessary assumptions/approximations

3. Integrating with existing IT system / workflow

– Fetching and preparing input to optimization model/algorithm

– Feeding back the (sub) optimal solution

4. Testing

– Verifying constraint satisfaction, hypothesis, etc…
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Optimization development phases

40%

15%

25%

20%

Business case/model needs to be defined!!!



An incomplete list for discrete optimization
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Optimization & Data science technologies

Mathematical 
Programming

Metaheuristics

Constraint 
Programming

Genetic 
Algorithms

Graph 
algorithms

Greedy 
algorithm

Swarm 
intelligence Machine 

Learning

Master the technologies and understand pros and cons



Optimization challenges in ABB



Optimal deployment of control 
solutions



Alessio Bonfietti, Alessandro Zanarini, Michele Lombardi, Michela Milano
https://link.springer.com/chapter/10.1007/978-3-319-44953-1_8

Multirate control systems

SystemController1

u1 y
Controller2Controller3

e1u2e2u3

Feedback

e3r

FastMediumSlow

Feedback

Feedback
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Context
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Hardware

• Heteregeneous parallel 
computational resources

• SoC (2 cores + FPGA)

Software



• Set of homogeneous resources R 

• Set of cyclic applications 𝐴 = {𝑎0, … , 𝑎𝑛−1}

o with fixed priority 𝑝𝑟𝑖𝑜(𝑎0) > … > 𝑝𝑟𝑖𝑜 𝑎𝑛−1

o with different periods 𝜆𝑖+1 = 𝜂𝑖 𝜆𝑖 (𝜆𝑚𝑎𝑥 = 𝜆𝑛−1)

• Apps composed from activities 𝑉𝑖 = {𝑥𝑗
𝑖}

o with fixed duration 𝑑(𝑥𝑗
𝑖)

o and precedences 𝑥𝑗
𝑖 ≺ 𝑥𝑘

𝑖

Objective function

Minimize makespan of a0 then a1 then …
min 𝑙𝑒𝑥𝑖𝑐𝑜(𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑎0 , … ,𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑎𝑛−1 )

Alessio Bonfietti, Alessandro Zanarini, Michele Lombardi, Michela Milano
https://link.springer.com/chapter/10.1007/978-3-319-44953-1_8

Problem Definition

Exploit periodicity 
and modularity to 

decrease 
# variables, 

computation time 
and memory usage
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Experimental evaluation

April 4, 2018

Avg #act MRC T&E DJ

Real 1 (ηtot = 36) 2353 5 521 496

Real 2 (ηtot = 2000) 177646 159 1827187 2468504

Solution time (ms)

MRC T&E DJ

Real 1 (ηtot = 36) 14.9 27.4 29.25

Real 2 (ηtot = 2000) 34.4 1258.3 1253.8

Memory Consumption (MB)



Stator Winding Design Optimization
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Gearless Mill Drives

Pioneered by ABB in 1969
low rpm, high torque, diameter up to 12m, up to ~30MW
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Stator
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Stator Winding
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Definitions – phases and connectors

No jumper side
(NJ SIDE)

Jumper
side

NJ SIDE



Problem description
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Design Optimization

1. Physical dimensions

2. Number of slots

3. Number of poles

4. Coil pitch

1. Bar to phase assignment

2. Routing of phases

3. Jumper placement

1. Comparison of different bar 
assignments

2. Verification of harmonics

Parameters definition Validation



April 4, 2018 Slide 24

Jumper Placement
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Results Routing + Jumper Placement



Container Terminal Optimization



Container terminals



Container trade growth
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Container logistics throughput grows significantly faster than global trade
2010 volumes higher than 2008 , 2011 increase 6-8% 

World exports total value

Global Container throughput

Million TEUs

Containerization enabled the 

development of global manufacturing 

bases in Asia

Containerization is expected to continue 

growing faster than world trade



Zooming in
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Off-load/load ship

Internal horizontal transportation

Storage

Land side interface



The life of a container in a terminal
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Container

Yard

Truck

Rail

Vessel Quay

Quay crane

Horizontal 

Transportation 

+

[Stacking Crane]

Horizontal 

Transportation 

+

Rail Mounted Guantry

Horizontal 

Transportation 

or Crane

Import

Transshipment

Export



Rich 2D packing problem
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Berth Allocation
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Objective function

– Maximize Quay Utilization

– Minimize Lateness

– Minimize Number QC Used Per Shift

– Minimize Number QC Night Shifts

– Minimize QC Idleness

Constraints

– Space and Time Constraints

– Non Passing Cranes

– Crane/Ship Compatibility

– Maximum Number Cranes per Ship

Features: offline problem

High Level Model
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Berth Allocation



Scheduling Problem
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Quay Crane Allocation and Scheduling
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Objective Function

– Maximize Throughput

– Minimize Interference

– Minimize QC Idleness

– Maximize Dual Cycling (single crane / multiple crane)

Constraints

– Safety Distance

– Non Passing Cranes

– Precedence between Working Queues

– Setup Time between Working Queues

– Boom-up / boom-down

– Crane/Ship Compatibility

Features: online and stochastic (working queue timing and QC failures)

High Level Model

Quay Crane Allocation and Scheduling



Routing Problem
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Horizontal Transportation



Objective Function

– Minimize QC/ASC Waiting Time

– Maximize Throughput (moves/hour)

– Minimize Empty Travelling Distance

Constraints

– Precedence between Job Orders

– Job Order Time Windows (release and due dates)

– Maximum Waiting Time for Trucks [Straddle Carriers]

– Global Pooling vs Local Pooling

– Union Regulations [Manned Vehicles] 

Features: online, highly stochastic (timing and job orders), data flow

High Level Model
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Horizontal Transportation



Scheduling Problem
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Automatic Stacking Crane Scheduling [Columbus]



Objective Function

– Maximize ASC Throughput

– Minimize Empty Travelling Distance 

– Minimize AGV/Trucks Waiting Time

Constraints

– Non Passing Cranes

– Precedence between Job Orders

– Job Order Time Windows (release and due dates)

– Coupled vs Decoupled Transfer Zone

Features: online, highly stochastic (timing and job orders), data flow

High Level Model
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Automatic Stacking Crane



Mining industry
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Underground Mine



Example of drill & blast cycle
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Automated scheduling

Ventilation

Bolting Drilling

Hauling

Scaling

Charging

Blasting

Concrete
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Automated scheduling
Blasts can only take 

place at certain times



The pure Job Shop Problem
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Mine Scheduling as a Rich Job Shop Problem

Drift 1

Drift 2

Drift 3

Drift 4

Machine 1

Machine 2

Machine 3

Machine 4



Adding blasts
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Mine Scheduling as a Rich Job Shop Scheduling

Drift 1

Drift 2

Drift 3

Drift 4

Machine 1

Machine 2

Machine 3

Machine 4

B

B

B

B

Blast B B

B

B



Adding Travelling time
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MinePROPT as a Rich Job Shop Scheduling

Drift 1

Drift 2

Drift 3

Drift 4

Machine 1

Machine 2

Machine 3

Machine 4

B

B

B

B

Blast B BB

B



Alternative Machines
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MinePROPT as a Rich Job Shop Problem

Drift 1

Drift 2

Drift 3

Drift 4

Machine 2a

Machine 2b



Case study



Cutting Stock Problem



Production of plastic pieces used in disaster recovery



• A mold creates a piece with 16 flaps/discs

• Forecasted orders for year 2017
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Understading the problem
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• What are the cost drivers?

• Total time of production, waste, total plastic used, overproduction, cutting costs

• Is there the possibility to build a new mold?

• Will different molds have the same yield?

• Will different molds have the same throughput?

• Are the production requirements constant or they may vary on subsequent years (i.e. stochastic)?

• Is the yield of the cutting procedure constant?

• Size of the problem?
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Understading the problem



• Decision variables

• Which mold length to create

• Which combination of molds to use subject to given production requirements

• Which cutting patterns to use subject to given production requirements

• Minimize

• Waste

• Over-production

• Number of cuts
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Actual problem

option A

option B



Variables

xij = k   integer variable, item “i” is cut out of stock “j”, “k” times 

yj = {0,1}   binary variable, whether stock “j” is used or not

zj = {0,1}   binary variable, whether stock “j” produces waste or not

Constraints

∑j xij ≥ di for all i  all the production requirements must be met

∑i li xij ≤ L yj for all j  the total length of item in stock j must not exceed stock length 

Lj yj – ∑i li xij ≤ M zj for all j  z must be equal to 1 if stock j creates waste

Objective function

min α1 ∑i ci (∑j xij – di ) + α2 ∑j  (L yj – (∑i li xij)) + α3(∑j zj)

Second Stage problem
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Item-based formulation (Kantorovich)

overproduction waste number of cuts*



Second Stage problem
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Pattern-based formulation (Gilmore and Gomory)

x0

x1

x2

x3

x4

x5

x6

xn
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Resolution method

Pattern Enumeration
(CP)

Pattern choice
(MIP)



Variables

zi = k   integer variable, number item “i” is cut out “k” times 

w = {0,…, L}   integer variable, waste of the pattern

o = {0,…, L – 1}   integer variable, number of  cutting operations

Constraints

L = ∑i lizi + w  length constraint

o = ∑i lizi – 1 + (Q > 0)  number of cutting operations

Generation of patterns
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Pattern-based formulation (Gilmore and Gomory)



Variables

xj = q   integer variable, pattern “j” is used “q” times 

Constraints

∑j pixj ≥ di for all i  all the production requirements must be met

Objective function

min α1( ∑i ci (∑j pixj – di ) + α2(∑j  wj xj) + α3 (∑j  oj xj)

Second Stage problem
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Pattern-based formulation (Gilmore and Gomory)

overproduction waste number of cuts*



• Item-based formulation performed poorly when adding over-production, and number of cuts

• Pattern enumeration

• Length 15  40 patterns       (2 msec)

• Length 25  328 patterns    (28 msec)

• Length 35  1995 patterns (300 msec)

• Instances solved within one second (length 16)

• Linear relaxation within 0.03% of optimal integral solution

• Given the optimal solution in term of waste and overproduction, difference in term of cutting 
operations is 10% (for 150thousands items  ~50hours of work)
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Experimental results and observations



Constraint Programming in a nutshell



Constraint Programming in a Nutshell

x + y + z ≤ 6

x + y = 4

alldifferent(x,y,z)

x = {1,2,3,4}

y = {1,2,3,4}

z = {1,2,3,4}

x = {1}

y = {1,2,3}

z = {1,2,3,4}

x * z > 2x = {3}

y = {1,2,3}

z = {1,2,3,4}

CP = Model + Search



Pro and Cons of Constraint Programming

PROS

Formulation strengths

y[ x ] = 1 (Element constraint)

( (x = 1) AND (y ≤ 2) )  ( (z + q > 5) OR (q = 1))                         (Reified constraint)

Global Constraints

– Increased filtering

– Higher level abstraction

CP Effective for problems with strong feasibility aspects

Particularly suited for Scheduling Problem



Global Constraints – alldifferent(x,y,z)

x = {1,2,3}

z = {1,2}y = {1,2}



Pro and Cons of Constraint Programming

CONS

Very weak bounds compared to MIP

Inefficient for pure optimization problems
[Hybridization with MIP and/or Metaheuristic gives very good results]

Typically needs hand-tailored heuristics for branching

Requires good understanding of propagation techniques behind constraints



Scheduling with CP

t

sj dj ej=+

[estj..lstj] [ectj..lctj]

Interval Var

optionalj = true

[sdj..ldj]



Constraint on Interval Var

q

i

j

r

eq ≤ sr

t

i

j

ej ≤ si



Unary Resource Constraint – Timetable propagation

Identify for each task its associated mandatory part

Filter the mandatory part from the other task domain

t

i

j

k



Unary Resource Constraint - Edge finding propagation

Identify a subset Ω of intervals

For each interval i ∉ Ω, verify if it can be executed before Ω

t

i

j

k



Just scratching the surface

Unary Resource

– Propagation Not-First / Not-Last

– Propagation of Detectable Precedences

– Transition Times (a.k.a. Setup Times)

– Intensity Functions (a.k.a. Calendar constraints)

Cumulative Resource

Reservoir Resource

State Resource



Conclusions



• Real challenge is understanding domain-specific knowledge and translate it into abstractions and 
mathematical formulations

• Getting access to data is key

• Baseline for comparing optimized solution vs current solution

• Understanding problem features and size

• Technology mastery is required to understand strengths and weaknesses of each technology and 
figure out which technology is suited for which problem

Conclusions


