

EPFL, 27.03.2018

Optimization challenges in ABB

Alessandro Zanarini, PhD, Principal Scientist

Introduction to ABB

(My very own experience on) Optimization Role and Goals

Optimization challenges in ABB

Case study

Constraint Programming in a Nutshell

Conclusions

Introduction to ABB

ABB: the pioneering technology leader

What (Offering)	Pioneering technology						
(orrening)	Products 58%	Systems 24%	Services & software 18%				
For whom (Customers)	Utilities	Industry	Transport & Infrastructure				
	~35% of revenue	~40% of revenue	~25% of revenue				
Where (Geographies)		Globally					
	Asia, Middle East, Africa 38%	Americas 29%	Europe 33%				
	~\$34 bn revenue	~100 countries	~132,000 employees				

Renewables Grid automation Digitalization Microgrids Electrification penetration Energy storage Productivity Energy efficiency Automation penetration Internet of Things Power quality / reliability Emerging markets Smart Cities Data management Electric transport Energy efficiency Power quality / reliability Decentralized power generation

©ABB

Shaping the world through innovation

+\$1.5 bn

Investment annually

7 Corporate research labs linked by a global research organization

Innovation is ingrained in the DNA of ABB

7 Research centers

(My very own experience on) Optimization Role and Goals

Automated tool vs Optimization

- Shift from "manual" to "automated tool" is seen as the holy grail underlying problem can be tough
- Optimization seen as cherry on the cake... but the cake is needed first 😊
- Optimization expert needs to educate the customer about "optimization potential/capabilities"
- Customer does not (always) know what he/she wants to optimize
- Optimization can unleash considerable potential savings

• Optimization may threaten jobs. No-optimization may threaten entire companies

Optimization development phases

- 1. Discovery
 - Understanding the problem, its constraints, its objective function(s)
- 2. Designing and implementing an optimization model/algorithm
 - All models are wrong but some are useful (cit. George Box)
 → understand necessary assumptions/approximations
- 3. Integrating with existing IT system / workflow
 - Fetching and preparing input to optimization model/algorithm
 - Feeding back the (sub) optimal solution
- 4. Testing
 - Verifying constraint satisfaction, hypothesis, etc...

Business case/model needs to be defined!!!

	40%	
	15%	
	25%	
	20%	
L	2070	

Optimization & Data science technologies

An incomplete list for discrete optimization

Optimization challenges in ABB

Optimal deployment of control solutions

Multirate control systems

Software

Hardware

- Heteregeneous parallel computational resources
- SoC (2 cores + FPGA)

Problem Definition

- Set of homogeneous resources R
- Set of *cyclic applications*
 - with fixed priority
 - o with different periods
- Apps composed from *activities*
 - o with fixed duration
 - o and precedences

$$A = \{a_0, \dots, a_{n-1}\}$$

$$prio(a_0) > \dots > prio(a_{n-1})$$

$$\lambda_{i+1} = \eta_i \lambda_i \quad (\lambda_{max} = \lambda_{n-1})$$

$$V_i = \{x_j^i\}$$

$$d(x_j^i)$$

$$x_j^i \prec x_k^i$$

Exploit periodicity and modularity to decrease # variables, computation time and memory usage

Objective function

Minimize makespan of a_0 then a_1 then ...

 $\min lexico(makespan(a_0), \dots, makespan(a_{n-1}))$

Experimental evaluation

	Avg #act	MRC	T&E	DJ
Real 1 (η _{tot} = 36)	2353	5	521	496
Real 2 (η _{tot} = 2000)	177646	159	1827187	2468504

Solution time (ms)

	MRC	T&E	DJ
Real 1 (η _{tot} = 36)	14.9	27.4	29.25
Real 2 (η _{tot} = 2000)	34.4	1258.3	1253.8

Memory Consumption (MB)

Stator Winding Design Optimization

Gearless Mill Drives

Pioneered by ABB in 1969 low rpm, high torque, diameter up to 12m, up to ~30MW

Stator Winding

Definitions – phases and connectors

©**ABB** April 4, 2018

| Slide 22 Black lines \rightarrow phase U, Blue lines \rightarrow phase V, Green lines \rightarrow phase W

Problem description

Parameters definition

- 1. Physical dimensions
- 2. Number of slots
- 3. Number of poles
- 4. Coil pitch

Design Optimization

- 1. Bar to phase assignment
- 2. Routing of phases
- 3. Jumper placement

Validation

- 1. Comparison of different bar assignments
- 2. Verification of harmonics

Jumper Placement

Results Routing + Jumper Placement

	Decomposed MIP+CP			Decomposed MIP			MIP					
n_s	t (µ)	t ($\sigma)$	\textit{Obj}_{CP}	%Sol	t (µ)	t ($\sigma)$	$\frac{Obj}{Obj_{CP}}$	%Sol	t (μ)	t (σ)	$\frac{Obj}{Obj_{CP}}$	%Sol
102	4.4	1.0	12.18	100%	2.4	1.2	100.0%	100%	177.6	112.2	98.2%	90%
264	28.6	28.7	23.57	100%	26.0	28.9	100.0%	95%	340.7	2.0	101.7%	5%
384	23.2	19.5	25.39	100%	19.4	19.4	99.9%	95%	342.1	3.2	-	0%
480	42.0	35.6	32.34	100%	38.8	34.8	100.1%	100%	339.8	2.2	-	0%
576	65.0	33.4	43.56	70%	60.4	32.7	99.8%	30%	341.2	2.4	-	0%

Container Terminal Optimization

Container terminals

Container trade growth

Container logistics throughput grows significantly faster than global trade

2010 volumes higher than 2008, 2011 increase 6-8%

The life of a container in a terminal

©ABB

A6Hide 2018

ABB

Berth Allocation

©ABB

April 4, 2018

Rich 2D packing problem

Авв

Berth Allocation

High Level Model

Objective function

- Maximize Quay Utilization
- Minimize Lateness
- Minimize Number QC Used Per Shift
- Minimize Number QC Night Shifts
- Minimize QC Idleness

Constraints

- Space and Time Constraints
- Non Passing Cranes
- Crane/Ship Compatibility
- Maximum Number Cranes per Ship
- Features: offline problem

Quay Crane Allocation and Scheduling

Scheduling Problem

April 4, 2018 | Slide 33 © ABB Group

©ABB

Quay Crane Allocation and Scheduling

High Level Model

Objective Function

- Maximize Throughput
- Minimize Interference
- Minimize QC Idleness
- Maximize Dual Cycling (single crane / multiple crane)
 Constraints
- Safety Distance
- Non Passing Cranes
- Precedence between Working Queues
- Setup Time between Working Queues
- Boom-up / boom-down
- Crane/Ship Compatibility

Features: online and stochastic (working queue timing and QC failures)

Horizontal Transportation

Routing Problem

Horizontal Transportation

High Level Model

Objective Function

- Minimize QC/ASC Waiting Time
- Maximize Throughput (moves/hour)
- Minimize Empty Travelling Distance

Constraints

- Precedence between Job Orders
- Job Order Time Windows (release and due dates)
- Maximum Waiting Time for Trucks [Straddle Carriers]
- Global Pooling vs Local Pooling
- Union Regulations [Manned Vehicles]

Features: online, highly stochastic (timing and job orders), data flow

Automatic Stacking Crane Scheduling [Columbus]

Scheduling Problem

Automatic Stacking Crane

High Level Model

Objective Function

- Maximize ASC Throughput
- Minimize Empty Travelling Distance
- Minimize AGV/Trucks Waiting Time

Constraints

- Non Passing Cranes
- Precedence between Job Orders
- Job Order Time Windows (release and due dates)
- Coupled vs Decoupled Transfer Zone

Features: online, highly stochastic (timing and job orders), data flow

Mining industry

Underground Mine

Automated scheduling

Example of drill & blast cycle

Mine Scheduling as a Rich Job Shop Problem

The pure Job Shop Problem

Mine Scheduling as a Rich Job Shop Scheduling

Adding blasts

MinePROPT as a Rich Job Shop Scheduling

Adding Travelling time

MinePROPT as a Rich Job Shop Problem

Alternative Machines

Case study

Cutting Stock Problem

Production of plastic pieces used in disaster recovery

- A mold creates a piece with 16 flaps/discs
- Forecasted orders for year 2017

Understading the problem

Understading the problem

- What are the cost drivers?
 - Total time of production, waste, total plastic used, overproduction, cutting costs
- Is there the possibility to build a new mold?
 - Will different molds have the same yield?
 - Will different molds have the same throughput?
- Are the production requirements constant or they may vary on subsequent years (i.e. stochastic)?
- Is the yield of the cutting procedure constant?
- Size of the problem?

Actual problem

- Decision variables
 - Which mold length to create
 - Which combination of molds to use subject to given production requirements
 - Which cutting patterns to use subject to given production requirements
- Minimize
 - Waste
 - Over-production
 - Number of cuts

Item-based formulation (Kantorovich)

Second Stage problem

Variables

 $x_{ij} = k \rightarrow$ integer variable, item "i" is cut out of stock "j", "k" times

 $y_j = \{0,1\} \rightarrow binary variable, whether stock "j" is used or not$

 $z_j = \{0,1\} \rightarrow binary variable, whether stock "j" produces waste or not$

Constraints

 $\begin{array}{ll} \sum_{j} x_{ij} \geq d_{i} & \text{for all } i \rightarrow \text{all the production requirements must be met} \\ \sum_{i} l_{i} x_{ij} \leq L y_{j} & \text{for all } j \rightarrow \text{the total length of item in stock } j \text{ must not exceed stock length} \\ L_{j} y_{j} - \sum_{i} l_{i} x_{ij} \leq M z_{j} & \text{for all } j \rightarrow z \text{ must be equal to 1 if stock } j \text{ creates waste} \end{array}$

Objective function

$$\begin{array}{ll} \min \alpha_1 \sum_i c_i (\sum_j x_{ij} - d_i) + \alpha_2 \sum_j (L y_j - (\sum_i l_i x_{ij})) + \alpha_3 (\sum_j z_j) \\ \text{overproduction} & \text{waste} & \text{number of cuts}^* \end{array}$$

Pattern-based formulation (Gilmore and Gomory)

Second Stage problem

Resolution method

Pattern-based formulation (Gilmore and Gomory)

Generation of patterns

Variables

 $z_i = k \rightarrow$ integer variable, number item "i" is cut out "k" times w = $\{0, ..., L\} \rightarrow$ integer variable, waste of the pattern $o = \{0, ..., L - 1\} \rightarrow$ integer variable, number of cutting operations

Constraints

 $L = \sum_{i} I_{i} z_{i} + w$ \rightarrow length constraint

 $o = \sum_{i} I_{i} z_{i} - 1 + (Q > 0) \rightarrow$ number of cutting operations

Pattern-based formulation (Gilmore and Gomory)

Second Stage problem

Variables

 $x_i = q \rightarrow$ integer variable, pattern "j" is used "q" times

Constraints

 $\sum_{j} p_{j} x_{j} \ge d_{j}$ for all $i \rightarrow$ all the production requirements must be met

Objective function

min
$$\alpha_1(\sum_i c_i (\sum_j p_i x_j - d_i) + \alpha_2(\sum_j w_j x_j) + \alpha_3 (\sum_j o_j x_j)$$

overproduction waste number of cuts*

Experimental results and observations

- Item-based formulation performed poorly when adding over-production, and number of cuts
- Pattern enumeration
 - Length $15 \rightarrow 40$ patterns (2 msec)
 - Length 25 \rightarrow 328 patterns (28 msec)
 - Length $35 \rightarrow 1995$ patterns (300 msec)
- Instances solved within one second (length 16)
- Linear relaxation \rightarrow within 0.03% of optimal integral solution
- Given the optimal solution in term of waste and overproduction, difference in term of cutting operations is 10% (for 150thousands items \rightarrow ~50hours of work)

Constraint Programming in a nutshell

Constraint Programming in a Nutshell

x + y + z ≤ 6
 x + y = 4
 alldifferent(x,y,z)
 x * z > 2

CP = Model + Search

Pro and Cons of Constraint Programming

PROS Formulation strengths

y[x] = 1 ((x = 1) AND (y ≤ 2)) → ((z + q > 5) OR (q = 1)) (Element constraint) (Reified constraint)

Global Constraints

- Increased filtering
- Higher level abstraction

CP Effective for problems with strong feasibility aspects

Particularly suited for Scheduling Problem

Global Constraints – alldifferent(x,y,z)

Pro and Cons of Constraint Programming

CONS

Very weak bounds compared to MIP

Inefficient for pure optimization problems [Hybridization with MIP and/or Metaheuristic gives very good results]

Typically needs hand-tailored heuristics for branching

Requires good understanding of propagation techniques behind constraints

Scheduling with CP

Constraint on Interval Var

Unary Resource Constraint – Timetable propagation

Identify for each task its associated mandatory part Filter the mandatory part from the other task domain

Unary Resource Constraint - Edge finding propagation

Identify a subset Ω of intervals

For each interval i $\notin \Omega$, verify if it can be executed before Ω

Just scratching the surface

Unary Resource

- Propagation Not-First / Not-Last
- Propagation of Detectable Precedences
- Transition Times (a.k.a. Setup Times)
- Intensity Functions (a.k.a. Calendar constraints)

Cumulative Resource

Reservoir Resource

State Resource

Conclusions

- Real challenge is understanding domain-specific knowledge and translate it into abstractions and mathematical formulations
- Getting access to data is key
 - Baseline for comparing optimized solution vs current solution
 - Understanding problem features and size
- Technology mastery is required to understand strengths and weaknesses of each technology and figure out which technology is suited for which problem